Step of Proof: member-exists
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
member-exists
:
T
:Type,
L
:(
T
List). (
x
:
T
. (
x
L
))
(
(
L
= []))
latex
by MaAuto
latex
1
:
1:
1.
T
: Type
1:
2.
L
:
T
List
1:
3.
x
:
T
. (
x
L
)
1:
(
L
= [])
2
:
2:
1.
T
: Type
2:
2.
L
:
T
List
2:
3.
(
L
= [])
2:
x
:
T
. (
x
L
)
.
Definitions
P
Q
,
P
&
Q
,
a
<
b
,
P
Q
,
(
x
l
)
,
,
False
,
P
Q
,
Void
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
[]
,
type
List
,
s
=
t
,
t
T
,
Type
Lemmas
iff
wf
,
false
wf
,
rev
implies
wf
,
l
member
wf
,
not
wf
origin